# 可量化的基數集項目 P&L: 0 ħ (≃ 0 CNY)

YAML 項目

{1,2}+{3,4}={1,2,3,4}

{1,2}+{2,3}={1,2,2,3}={1,2_2,3}

1,2+1,2=2*{1,2}={1,1,2,2}={1_2,2_2}

{a_x}+{a_y}={a_(x+y)}

{1,2,3}-{1}={2,3}

{1,2}-{1,2}={}={1_0,2_0}

{1,2}-{1,2,3,4}=-{3,4}={3_-1,4_-1}

{1,2,3}-{3,4,5}={1,2}-{4,5}={1,2,4_-1,5_-1}

{a_x}-{a_y}={a_(x-y)}

3*{1,2,3}={1,1,1,2,2,2,3,3,3}={1_3,2_3,3_3}

-2*{1,2,3}={1_-2,2_-2,3_-2}=-{1_2,2_2,3_2}

0.5*{1,2,3}={1_0.5,2_0.5,3_0.5}

2*{1_0.5,2_0.5,3_0.5}={1,2,3}

y*{a_x}={a_(x*y)}

{a,b}*{c,d}={a+c,a+d,b+c,b+d}

{a,b,c}*{d,e}={a+d,a+e,b+d,b+e,c+d,c+e}

{a_x,b_y}*{c_z,d_t}={(a+c)_xz,(a+d)_xt,(b+c)_yz,(b+d)_yt}

{{a},{b}}*{{c},{d}}={{a,c},{a,d},{b,c},{b,d}}

{{a},{b}}^2={{a_2},{a,b}_2,{b_2}}

P({a,b,c,d})，P({a,b}),P({c,d})：

P({a,b})={0,{a},{b},{a,b}}

P({c,d})={0,{c},{d},{c,d}}

P({a,b,c,d})={0,{c},{d},{c,d},{a},{a,c},{a,d},{a,c,d},{b},{b,c},{b,d},{b,c,d},{a,b},{a,b,c},{a,b,d},{a,b,c,d}}

P(A+B)=P(A)*P(B)

a_{b}=a+b。{a}*{b}={a+b}={a_{b}}

0={}

1={0}

2=1+1={0}+{0}={0,0}={0_2}

3=2+1={0,0}+{0}={0,0,0}={0_3}

n={0_n}。x={0_x}。

{2,4,6,...}/{1}={1,3,5,...}

{1,2,3,...,}/{2,4,6,...}={0,-1}

[0,∞)/[0,1)={0,1,2,3,...}

x_{a}=x+a,x_{b}=x+b,x_{c}=x+c。A={m,n,p}，{{a},{b},{c}}^A={{m+a},{m+b},{m+c}}*{{n+a},{n+b},{n+c}}*{{p+a},{p+b},{p+c}}。

{0,1}^A=P(A)

{0,0}^A=2^A=2^|A|

{1,1}^A={A_2^|A|}

{0,1,2}^{a,b,c}={0,{a},{a_2}}*{0,{b},{b_2}}*{0,{c},{c_2}}

{{c},{d}}^{a,b}={{a+c,b+c},{a+c,b+d},{a+d,b+c},{a+d,b+d}}

{{c,d},{e,f}}^{a,b}={{a+c,a+d},{a+e,a+f}}*{{b+c,b+d},{b+e,b+f}}

{{c},{d},{e},{f}}^{a,b}={{a+c},{a+d},{a+e},{a+f}}*{{b+c},{b+d},{b+e},{b+f}}

{a_x,b_y}+{a_z,b_t}={a_(x+z),b_(y+t)}

(a_x,b_y}*{c_z,d_t}={a+c_xz,a+d_xt,b+c_yz,b+d_yt}

{{c},{d}}^{a,b}={{a+c},{a+d}}*{{b+c},{b+d}}

P(A+B)=P(A)*P(B),A^(C*B)=(A^C)^B

P(A)={0,1}^{a_x,b_y,c_z}

P(A)={0,1}^{a_x}*{0,1}^{b_y}*{0,1}^{c_z}

{0,1}^{a}={0,{a}}，{0,1}^{a_x}=({0,1}^{a})^x，P(A)={0,{a}}^x*{0,{b}}^y*{0,{c}}^z

{0,{a}}^x={0,{a}_x,{a_2}_x*(x-1)/2,...,{a_n}_x*(x-1)*...*(x-n+1)/n!,.....}

P({a_x,b_y,c_z})={0,{a}_x,{a_2}_x*(x-1)/2,...,{a_n}_x*(x-1)*...*(x-n+1)/n!,.....}*{0,{b}_y,{b_2}_y*(y-1)/2,...,{b_n}_y*(y-1)*...*(y-n+1)/n!,.....}*{0,{c}_z,{c_2}_z*(z-1)/2,...,{c_n}_z*(z-1)*...*(z-n+1)/n!,.....}

1/{0,1}={0,1}^-1={0,1_-1,2,3_-1,4_1,.....}。

{0,1_-1,2,3_-1,4_1,.....}*{0,1}={0,1_-1,2,3_-1,4_1,.....,1,2_-1,3,4_-1,.......}={0}=1。1/{0,1,2}={0}+{1,2}*-1+{1,2}^2+{1,2}^3*-1+...，1-2+4-8+....=1/3。

1-n+n^2-n^3+....=1/(n+1)。

1/{0,1}^2={0}+{1}*-2+{2}*3+{3}*-4+....，1-2+3-4+....=1/4。

1/{0,1}^3={0}+{1}*-C(1,3)+{2}*C(2,4)+{3}*-C(3,5)+....，1-3+6-10+....=1/8。

C(0,n-1)-C(1,n)+C(2,n+1)-C(3,n+2)+.....=1/2^n。

C(n,n)*C(k,k+n-1)-C(n-1,n)*C(k+1,k+n)+,,,,+(-1)^i*C(n-i,n)*C(k+i,k+n-1+i)+......+(-1)^n*C(0,n)*C(k+n,k+2n-1)=0.

1/{-1,0_-1}=({-1}-1)^-1={1,2,3,4,.....}

1/{-2,0_-1}={2,4,6,8,.....}

1/{1,2,3,4,....}={-1,0_-1}

{1,2,3,....}/{2,4,6,....}={-2,0_-1}/{-1,0_-1}={0,-1}

{1,3,5,...}-{2,4,6,....}={1,2:-1,3,4:-1,5,6:-1,......}={1}/{1,0}

a:1->b:1

a:10->b:10

a:3,b:7->c:4,d:6

a:-1->a:-1

a,b:0.5,c:-0.3->d:1.2

{a:-1}{} ={b,b:-1},b:-1->a:-1，

aleph0+pi=aleph0。{a1,a2,a3,....}{a1,a2,a3,...,b:pi}。a1,a2,a3->b:3。a4->b:pi-3,a1:4-pi。a5->a1:pi-3,a2:4-pi。...a(n+4)->an:pi-3,a(n+1):4-pi。....

Aleph0*pi=aleph0。{a1:pi,a2:pi,a3:pi,....}{a1,a2,a3,...,}

a(6i-5),a(6i-4),a(6i-3)->a(i):pi-3,a(2i-1):6-pi。a(6i-2),a(6i-1),a(6i)->a(i):pi-3,a(2i):6-pi。


(別通知) (可選) 請，登錄

[skihappy]，您可以使用負基數對負質量進行建模，但是作爲概念的負基數嚴格等同於負質量，因此，它不是負質量。

[skihappy], you could model negative mass with negative cardinality, but negative cardinality as a concept is strictly is not equivalent to negative mass, so, it's not negative mass.

For an accountant, negative cardinality could be negative assets (liabilities), and other specialists it may be concepts in other domains.

(別通知) 請，登錄

// 負基數是負質量 ????

// negative cardinality is negative mass ????

No. Cardinality is the number of elements (so-called "size of the set") within a set, so, negative cardinality would be the size of the set that has less than 0 elements.

(別通知) 請，登錄

Cardinality number can be a measure of mass. Then negative cardinality is negative mass. ???? What does it mean?

(別通知) 請，登錄

Negative cardinality is deficit of something, a task yet to be done. It has to do with sequence, then, and time. Really interesting.

    :  --
: Mindey
:  --


skihappy,
(別通知) 請，登錄

 只包括接下來的關鍵詞的評論